915 research outputs found

    Avalanche of particles in evaporating coffee drops

    Get PDF
    The pioneering work of Deegan et al. [Nature 389, (1997)] showed how a drying sessile droplet suspension of particles presents a maximum evaporating flux at its contact line which drags liquid and particles creating the well known coffee stain ring. In this Fluid Dynamics Video, measurements using micro Particle Image Velocimetry and Particle Tracking clearly show an avalanche of particles being dragged in the last moments, for vanishing contact angles and droplet height. This explains the different characteristic packing of the particles in the layers of the ring: the outer one resembles a crystalline array, while the inner one looks more like a jammed granular fluid. Using the basic hydrodynamic model used by Deegan et al. [Phys. Rev. E 62, (2000)] it will be shown how the liquid radial velocity diverges as the droplet life comes to an end, yielding a good comparison with the experimental data.Comment: This entry contains a Fluid Dynamics Video candidate for the Gallery of Fluid Motion 2011 and a brief article with informatio

    Order-to-disorder transition in ring-shaped colloidal stains

    Get PDF
    A colloidal dispersion droplet evaporating from a surface, such as a drying coffee drop, leaves a distinct ring-shaped stain. Although this mechanism is frequently used for particle self-assembly, the conditions for crystallization have remained unclear. Our experiments with monodisperse colloidal particles reveal a structural transition in the stain, from ordered crystals to disordered packings. We show that this sharp transition originates from a temporal singularity of the flow velocity inside the evaporating droplet at the end of its life. When the deposition speed is low, particles have time to arrange by Brownian motion, while at the end, high-speed particles are jammed into a disordered phase.Comment: accepted for PR

    Oscillations of a gas pocket on a liquid-covered solid surface

    Get PDF
    The dynamic response of a gas bubble entrapped in a cavity on the surface of a submerged solid subject to an acoustic field is investigated in the linear approximation. We derive semi-analytical expressions for the resonance frequency, damping and interface shape of the bubble. For the liquid phase, we consider two limit cases: potential flow and unsteady Stokes flow. The oscillation frequency and interface shape are found to depend on two dimensionless parameters: the ratio of the gas stiffness to the surface tension stiffness, and the Ohnesorge number, representing the relative importance of viscous forces. We perform a parametric study and show, among others, that an increase in the gas pressure or a decrease in the surface tension leads to an increase in the resonance frequency until an asymptotic value is reached

    Human-centred design methods : developing scenarios for robot assisted play informed by user panels and field trials

    Get PDF
    Original article can be found at: http://www.sciencedirect.com/ Copyright ElsevierThis article describes the user-centred development of play scenarios for robot assisted play, as part of the multidisciplinary IROMEC1 project that develops a novel robotic toy for children with special needs. The project investigates how robotic toys can become social mediators, encouraging children with special needs to discover a range of play styles, from solitary to collaborative play (with peers, carers/teachers, parents, etc.). This article explains the developmental process of constructing relevant play scenarios for children with different special needs. Results are presented from consultation with panel of experts (therapists, teachers, parents) who advised on the play needs for the various target user groups and who helped investigate how robotic toys could be used as a play tool to assist in the children’s development. Examples from experimental investigations are provided which have informed the development of scenarios throughout the design process. We conclude by pointing out the potential benefit of this work to a variety of research projects and applications involving human–robot interactions.Peer reviewe

    Apparatus to control and visualize the impact of a high-energy laser pulse on a liquid target

    Get PDF
    We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at timescales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion at upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.Comment: Submitted to Review of Scientific Instrument

    Building micro-soccer-balls with evaporating colloidal fakir drops

    Get PDF
    Evaporation-driven particle self-assembly can be used to generate three-dimensional microstructures. We present a new method to create these colloidal microstructures, in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion droplets on a special type of superhydrophobic micro-structured surface, on which the droplet re- mains in Cassie-Baxter state during the entire evaporative process. The remainders of the droplet consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the dynamics of the droplet evaporation.Comment: Manuscript Submitted to Physical Review Letters, 29th February 201

    Phase III study of nilotinib versus best supportive care with or without a TKI in patients with gastrointestinal stromal tumors resistant to or intolerant of imatinib and sunitinib

    Get PDF
    Background This phase III open-label trial investigated the efficacy of nilotinib in patients with advanced gastrointestinal stromal tumors following prior imatinib and sunitinib failure. Patients and methods Patients were randomized 2:1 to nilotinib 400 mg b.i.d. or best supportive care (BSC; BSC without tyrosine kinase inhibitor, BSC+imatinib, or BSC+sunitinib). Primary efficacy end point was progression-free survival (PFS) based on blinded central radiology review (CRR). Patients progressing on BSC could cross over to nilotinib. Results Two hundred and forty-eight patients enrolled. Median PFS was similar between arms (nilotinib 109 days, BSC 111 days; P=0.56). Local investigator-based intent-to-treat (ITT) analysis showed a significantly longer median PFS with nilotinib (119 versus 70 days; P=0.0007). A trend in longer median overall survival (OS) was noted with nilotinib (332 versus 280 days; P=0.29). Post hoc subset analyses in patients with progression and only one prior regimen each of imatinib and sunitinib revealed a significant difference in median OS of >4 months in favor of nilotinib (405 versus 280 days; P=0.02). Nilotinib was well tolerated. Conclusion In the ITT analysis, no significant difference in PFS was observed between treatment arms based on CRR. In the post hoc subset analyses, nilotinib provided significantly longer median O
    • 

    corecore